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Abstract. We show that the change of states in the Mott scattering spin measurement, in 
the spin factor space, belongs to the class of generalised quantum measurements. An 
explicit example of the identity decomposition, which corresponds to the Mott scattering 
spin measurement, is given. 

1. Introduction 

The aim of this paper is to compare the Stern-Gerlach spin measurement (SGSM) and 
the Mott scattering spin measurement ( M S S M )  in order to show that the Msshf  belongs 
to the generalised quantum measurements (Kraus 1983). 

The standard quantum measurement, described by the well known “projection 
postulate’ (von Neumann 1956), contains two assumptions that can hardly be avoided 
in any description of a measurement: the first one is that the macroscopically different 
events are represented by orthogonal vectors and states (in the chosen Hilbert space), 
and the second one is the repeatability hypothesis. Nevertheless, the projection 
postulate gives a highly idealised description of the measurement process. In particular, 
it is incompatible with the quantum dynamical law and, what is very important, the 
most frequent and perhaps the only possible measurement, that of the position, cannot 
be properly incorporated in the standard quantum description (see, e.g., Davies 1976 
and Ozawa 1984). Some important developments aimed at a more realistic description 
of the measurement process have been published recently (e.g. by Ghirardi et a1 (1986), 
Joos and Zeh (1985) and Kraus (1983)) and, independently of their slight differences, 
their common characteristic is the use of the framework of generalised dynamical maps 
(Sudarshan et a1 1961) in which generalised measurements belong to the class of 
completely positive dynamical maps. 

The aim of this paper is to show that the MSSM (Kessler 1985) is an example of a 
generalised measurement in the spin factor space. This relatively simple example 
should show the most important properties of generalised measurements and allows 
a comparison with the SGSM which is, in the spin factor space, one of the rare examples 
of a standard measurement. Two points, very important in other circumstances, will 
not be discussed in this paper. The first one is the wavepacket reduction and the 
second one is the proper quantum description of the scattering process (e.g., as given 
in Kraus (1983) ch 5 ) .  Instead, we will simply adopt the projection postulate for the 
standard quantum measurement and, in the scattering process in the MSSM, no descrip- 
tion of the target will be made. 
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The paper is organised as follows. In next section we give a brief description of 
the SGSM and some general remarks on predictive and retrospective aspects of measure- 
ments. Section 3 contains a simplified description of the MSSM. In $4 we consider 
the Mott spin measurement in C2, pointing out the difference between its predictive 
and retrospective contents. In 0 5 an explicit example of the MSSM in terms of 
generalised measurements is given. Section 6 concludes the paper. 

2. Stern-Gerlach spin measurement 

The aim of this section is to give the notation and a simplified description of the SGSM. 

Furthermore, the SGSM is made use of for a discussion on the retrospective and 
predictive aspects of measurements. 

The appropriate Hilbert space is a composite one H = H o O H s  ; Ho is the orbital 
factor space and H, = C 2  is the spin (s = f) factor space. Circumflexed capital letters 
\IjillAdenoie opTrators over a Hilbe? space. in  particular, projectors are denoted by 
P; P+ = P2 = P, and states b r  W; W 2 0, tr( W) = 1. The set of all states is a convex 
set having pure states, + = P, as extrema1 points. In the case of s = 4 the set of states 
is a ball which is in one-to-one correspondence to the set of polarisation vectors 
P = { P x ,  P,, PL} where I PI = (P: + P;, + P ; ) ” * S  1. States described by I P I = 1 are pure 
states, while I PI = 0 describes the unpolarised state @=if This is the well known 
‘PoincarC sphere’ of polarisations (Bloore 1976). 

In a Stern-Gerlach set-up oriented, for example, along the y axis assuming that 
the initial beam of spin s = f particles travel along the z axis, the inspected beam splits 
in two parts in accordance with its initial polarisation. If an initial state is defined by 

If;)  = If0i)O I si) 
an interaction with a magnetic field gives 

If) - (+ I si) l fo+)@l+)+  (- I si) lfo-)@ I - ) U  

ci.,= I ( ~ i I + ) I ’ I f O - ) ( f o - I o I + ) ( + l I  + I(siI - ) I ~ I ~ O - ) ( ~ O - I ~ I - ) ( - I .  

After the localisation, i.e. after the wavepacket reduction, the observed state is 

(1) 

The two orbital parts Ifo+) and Ifo-) overlap negligibly and the experimental set-up 
should ascertain their orthogonality, not only that (fo+ Ifo-) - 0, but also that 

Ifo+(r) Ilfo-(r) I dv -0. 

The spin states in (1) are also orthogonal and the SGSM may be accepted as a paradigm 
for a standard quantum measurement in the spin factor space H,. A description of 
this process in H, is given by ‘projection postulate’ (von Neumann 1955) 

where is an initial state, {kk} are eigenprojectors of the measured observable and 
kf is the final state. We give the following reasons for accepting the SGSM as a standard 
measurement: 
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(i) a value of the measured observable may be assigned to almost every system (in 

(ii) measurements are, in principle, repeatable. 
In the set of spin states, SGSM is described by the orthogonal projection of the 

initial state on the line connecting the eigenprojectors of the measured spin component. 
Each single system, after the measurement, is either in the state Fx+ or in py- (assuming 
that the Stern-Gerlach set-up is oriented along the x axis). However, the result of the 
measurement, performed over an ensemble in an initial state k,, is the convex 
combination 

this case by means of different positions), and 

A A *  k,= tr(pxTk~)pT++tr(P,_W,)P,_ 

which coincides with the orthogonal projection of k, onto the line defined by ( Fy+ , px-). 
In terms of polarisation vectors, the initial state P = { P,, P,, Pz}  is mapped into the 
after-measurement state P'=  { P r ,  0, O}. This is represented in figure 1. 

P, . 
Figure !. SGSM in set of states for s = f .  States from the shaded area are admissible initial 
states Wi for the final state W,. 

It is easy to infer, from equation (2) ,  that SGSM gives a precise description of the 
final state, independently of the knowledge on the initial state. This is valid both for 
an ensemble and for a single system. In the case of retrospection, the set of admissible 
initial states is the circle orthogonal on (ST+, ex-) at the point kf, i.e. any state from 
that circle will, in the measurement of $x, give the same result, W,. This is valid for 
an ensemble of systems; for a single system, occurrence of, for example, S,+ in the 
measurement means that the initial state of the system can be any state different from 
Px- .  

In this paper it will be important to differentiate between the predictive and the 
retrospective aspects of measurements. The predictive aspect concerns one's ability 
to describe the after-measurement state of the inspected ensemble or system from the 
results of measurement, and the retrospective one concerns the ability to infer the 
pre-measurement, initial, state of a system or an ensemble from the results of a 
measurement. For example, the classical measurement is both retrospective and predic- 
tive while the standard quantum measurement can be made predictive (for any complete 
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measurement) both for an ensemble and for a single system. On the other hand, 
standard quantum measurement is retrospective, but only with respect to the measured 
observable and it is inadequate for the determination of the pre-measurement state. 
A careful differentiation between these aspects will be important for a proper under- 
standing of generalised measurements. 

3. Mott scattering spin measurement 

The SGSM works, for example for uncharged particles, but if one wants to measure, 
for example the spin of an electron, the only way is to use the Mott scattering spin 
measurement ( MSSM).  Here we give a description of the MSSM following Kessler (1985). 

In Mott scattering (polarised beam, unpolarised target), due to the spin-orbit 
coupling the following situation occurs: the initial state in H o O H s  is defined by 

IX)=Ifoi)@lsi)* 

We assume that 

(a complete initial polarisation in the (x, z )  plane), where r, 8 and 4 are spherical 
coordinates: 8 is measured from the + z  axis; 4 from the +x axis in the ( x , y )  plane 
and the distance from the origin which is placed in the interaction region is measured 
by r. 

As has already been stated, the z axis is given by the initial momentum of particles, 
while the x axis is defined a posteriori so that the initial polarisation vector always lies 
in the (x, z) plane. 

For a single particle, scattered and localised near the point ( r o ,  Bo, c#J~) ,  the spin 
state is 

where 3 is the scattering matrix (cf Kessler (1985), equations (3.59) and (3.61)) 

(5) 

written in the basis in which ŝ , is diagonal while f and g are the scattering amplitudes. 
One may introduce four parameters, Z, S, T and U, 

and after the scattering, localisation of a particle near the point ( ro,  Bo, 40) occurs with 
probability (Kessler (1985), equation (3.70)) 

P ( ~ O , B O ,  + O ) - Z ( ~ , ) [ ~ - S ( ~ O )  sin(40)pxl =tr(g+sig+)* (7) 

New polarisation parameters, characterising the final spin state (equation (4)) for a 
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single particle are (Kessler (1985), equation (3 .75 ) )  

S, T, U ( S 2 +  T 2 +  U’= 1) and I (from (6)) are dependent on the kind of the target, 
the energy of particles and the observed angle 8. 

In order to obtain the MSSM the following preparations are necessary. An 
unpolarised beam, containing N (  N >> l ) ,  particles is scattered from the target. At the 
distance r, in the ring-shaped region between Bo and B o + A B  which we denote by 
R(ro, e,) N ,  particles are detected. These particles should be evenly distributed with 
respect to 4 (because of (7 ) ) .  The next step is to use a completely polarised beam, 
for example along the x axis. This time, again due to (7) ,  particles are scattered 
asymmetrically with respect to 4. The observed asymmetry is a maximal one because 
of a completely polarised initial beam. The ‘calibration’ can be completed after N ,  
particles are detected in the ring R(ro ,  6,). 

For an incident beam, having an unknown polarisation, scattering of N ,  particles 
in the ring R(ro,  e,) allows the determination of the spin projection of the initial 
polarisatjon on the ( x , y )  plane. The observed asymmetry in the distribution of N ,  
particles detected inside the ring R(ro,  0,) gives data on the orientation of the spin 
projection in the (x, z )  plane (orthogonal to the line connecting the maximum and the 
minimum of the particle distribution over the ring R(ro ,  e,)) and on the amount of 
polarisation in the ( x , y )  plane (through the comparison with data on a completely 
polarised and the completely unpolarised initial beam). 

Obviously, MSSM essentially differs from the standard quantum measurement giving 
the spin projection in the chosen plane, which is not an observable. Another point is 
that a careful distinction must be made between the retrospective part (equation (7) )  
and the predictive part (equations (4) and ( 7 ) )  for the MSSM. 

4. Description of MSSM in C2 

In this section we give a description of MSSM as it occurs in the spin factor space H , .  
In 0 4.1 we assume the initial spin state to be known in advance while in § 4.2 we 
assume that the initial spin state is unknown. 

4.1. MSSM with a known initial state 

An approximate description of the after-measurement state for the collection of particles 
scattered in the ring R(ro ,  e,) is given by 

where Ifk) = If( r, ,  60, &)) are almost orthogonal vectors having wavefunctions which 
are as near as possible to S ( r -  ( r o ,  eo, &)) ‘describing’ the point ( r o ,  eo, ( b k ) .  The 
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spin state of a particle detected near the point ( r o ,  Bo, q&) is 

where P:,  J = x, y ,  z, are given by (8) and { c$k = 2 k ~ /  n }  gives an appropriate equiparti- 
tion of the ring R ( r o ,  eo). 

The approximation mentioned above follows from the assumed ‘orthogonal’ 
decomposition in the orbital space by means of { I fk)}  satisfying ( fk  I f , )  - Skm and 
x k  I f k ) ( f k I  - 1  ro)(rol@@(eo,  eo+Ae)@I, butitmaybeacceptedwithoutseriousdifficul- 
ties. This almost orthogonal decomposition in Ho induces a non-orthogonal decomposi- 
tion in the spin factor space, by means of 4, which is a very important feature of 
generalised measurements. However, for a proper description one must take the trace 
of (9) over Ho in order to obtain the accurate after-measurement spin state. 

If the initial spin state is 

the final spin state for the collection of particles scattered in the ring R ( r o ,  0,) is 

One should notice that the set of pure states 

Pf;+P:,+P:=l 

[2Pk/( 1 + T ) I 2 +  [ 2 P  ;,/( 1 + T)I2  + ( P : /  T ) 2 =  1. 

is, by (1 l),  mapped onto the ellipsoid 

Equations (10) and (11) give a dynamical map in the set of states for the spin s = f  
case, performed by the MSSM. How this looks in the set of spin states is shown in 
figure 2. 

Figure 2. Predictive MSSM in set of states. Ensemble change of state for T = i .  The set 
of pure states is mapped on the ellipsoid. 
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4.2. MSSM with unknown initial state 

As already stated, the retrospective result of MSSM is given by (7 ) ;  it determines the 
projection of the initial spin state on the (x, y )  plane. Chosing the x axis a posteriori, 
the retrospection of the initial spin state is 

where P, was obtained from ( 7 ) .  The set of admissib!e pre-measurement states is the 
segment orthogonal to the (x, y )  plane at the point W:. The advantage of the MSSM 

for retrospection compared to the SGSM is obvious. 
On the other hand, concerning the prediction, the after-measurement state for a 

MSSM, for which (12) is the retrospected state, can be any state given by (1 1) assuming 
that P, is a parameter satisfying 0 s  P, s (1 - P:)”*. Therefore the MSSM gives an 
accurate prediction only if the initial state is known; otherwise the prediction is 
incomplete. What has been said is valid for ensembles; for a single system MSSM gives 
neither the prediction nor retrospection. Again this can be represented in the set of 
spin states (figure 3). 

Figure 3. Retrospective MSSM i?  se! of states. ?e set of admissible initial states for W 
is represented by the segment {Pa, P h } .  W‘ = ; ( P o +  Ph).  

It is an interesting fact that data about the initial polarisation, which are obtained 
from the MSSM, are equivalent to the data obtained from two SGSM performed along 
the x and y axes. As a consequence, the MSSM is nearer to a state determination 
procedure (Ivanovic 1981) than SGSM is. 

5. Generalised measurement formulation 

In this section an explicit formulation of the MSSM as a predictive generalised measure- 
ment in spin space is given. 

Generalised quantum measurement is usually represented by 

~ f = p i : w $ ,  
k 
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where Z k  && = r^ is the corresponding gecomposition of the identity. Equation (13) 
simply reduces to (2) in the case when { B k }  is a set of mutually orthogonal projectors, 
i.e. an orth:gonfl decompositio? of ih? identity. For a given decomposition {Ak>,  
& 3 0, zk A~ = I factorisations Ak = B ~ B :  are non-unique; also different decomposi- 
tions may give the same change of a state. 

f =  d( t )d t .  

Another kind of identity decomposition is the continuous one: 

5 
Perhaps the best known example is that of a coherent state decomposition. The aim 
of this section is to offer an explicit realisation of a continuous decomposition of the 
identity which corresponds to the MSSM. 

The most natural decomposition is already given through the set of scattering 
matrices $(e ,  4) (equation ( 5 ) ) .  In terms of S, T, U and I (equation (6)) and up to 
a normalisation constant 

$(e,4)--(('- is)/( 1 - T )  
-exp(-i4) ( U - i S ) / ( l -  T )  

while 

1 -is exp( - i&)  
is exp(i4) 1 

&?+ = I (  

written in the basis in which iz is diagonal. 

R(  r , ,  e,) is given by 
Chosing 0 = Bo,  with proper normalisation the desired decomposition in the ring 

A A  A 

Hence the single-system spin state scattered near (rot  Bo, 4,) is given by ~ r =  SWiSt 
while the ensemble state for the particles scattered inside R(ro ,  e,) is 

In the complete decomposition of the identity, i.e. for all values of 8, the decomposition 
given by (14) should be repeated for every value of 8, with different 9 and an appropriate 
normalisation. One should notice that this is valid both for pure and mixed initial 
spin states. 

The ensemble change of state (15) can be obtained in a number of ways and we 
give one more example: 

[ 1 - 2( b2 + c ' ) ] " ~  
[I -2(a2+c2)]1'2 

0 

where a, b and c are real parameters satisfying 

a, b, c > 0 a b > c  (a2+ c 2 )  < + ( b2+ c2)  < i. 
Nevertheless, the continuous decomposition (14) allows the most satisfactory interpre- 
tation for the description of single systems. 
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It is possible to identify (15) as a non-selective measurement assuming that the 
measurement apparatus is composed of the target and of a photoplate placed inside 
the ring R (  ro ,  eo), due to the fact 'ha; only after the localisation of a particle does one 
know the exact scattering matrix S ( O o ,  9) which has been activated. e k o 2  non- 
occurrence of a localisation near ( r o ,  eo, 4 )  does not mean that $fr- SW,S' has 
occurred, as will be the case for the standard measurement. 

6. Conclusions 

We conclude this paper with several remarks. The first one is that all calculations are 
given for the rest frames of the scattered particles. To obtain an ensemble for which 
(11) is valid, one must perform a number of preparatory position measurements in 
the ring R ( r o ,  eo). Collimation of all particles along a single direction without altering 
its spin will give the desired ensemble. 

Compared to the SGSM the MSSM is better for retrospective measurements while 
the opposite is true for predictive measurements; it is useful to repeat the main features 
of the MSSM: 

(i)  no value of an observable (in the spin space) can be assigned to a single system 
as a measurement result if the initial state is unknown; 

(ii) there exists a minimal number of particles, for each set-up which must be 
scattered in the desired region in order to obtain an accurate result, and 

(iii) there is no repeatability. 
These properties should be valid for the majority of generalised measurements. 

Finally, a better understanding of generalised measurements which are a class of 
dynamical maps may improve our insight into a proper quantum description of the 
measurement process. 
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